Gross vs Rovelli…. String Theory or Loop Quantum Gravity or….

 

String Theory or Loop Quantum Gravity? David Gross vs Carlo Rovelli

String theory has dominated discussions at the frontiers of physics for decades, especially in the attempts to build a quantum theory of gravity. But does it deserve its exalted status? Nobel Prize winner and String Theory pioneer David Gross debates Carlo Rovelli, one of the founding fathers of Loop Quantum Gravity. The discussion is lively; full of insights, insults, backhanded compliments and even some common ground as to the nature of physics. Timecodes 0:00 Introduction 3:00 David Gross early years, 4:00 Carlo Rovelli early years 5:22 David on string theory 20:22 Carlo on string theory 31:08 David&Carlo on string theory 53:20 Loop Quantum Gravity 1:00 David&Carlo on LQG 1:21 Black Holes 1:30 Predictions and the Scientific Method

 

 

String Theory Meets Loop Quantum Gravity

Two leading candidates for a “theory of everything,” long thought incompatible, may be two sides of the same coin.
17

 

Olena Shmahalo/Quanta Magazine

Eight decades have passed since physicists realized that the theories of quantum mechanics and gravity don’t fit together, and the puzzle of how to combine the two remains unsolved. In the last few decades, researchers have pursued the problem in two separate programs — string theory and loop quantum gravity — that are widely considered incompatible by their practitioners. But now some scientists argue that joining forces is the way forward.

Among the attempts to unify quantum theory and gravity, string theory has attracted the most attention. Its premise is simple: Everything is made of tiny strings. The strings may be closed unto themselves or have loose ends; they can vibrate, stretch, join or split. And in these manifold appearances lie the explanations for all phenomena we observe, both matter and space-time included.

Loop quantum gravity, by contrast, is concerned less with the matter that inhabits space-time than with the quantum properties of space-time itself. In loop quantum gravity, or LQG, space-time is a network. The smooth background of Einstein’s theory of gravity is replaced by nodes and links to which quantum properties are assigned. In this way, space is built up of discrete chunks. LQG is in large part a study of these chunks.

This approach has long been thought incompatible with string theory. Indeed, the conceptual differences are obvious and profound. For starters, LQG studies bits of space-time, whereas string theory investigates the behavior of objects within space-time. Specific technical problems separate the fields. String theory requires that space-time have 10 dimensions; LQG doesn’t work in higher dimensions. String theory also implies the existence of supersymmetry, in which all known particles have yet-undiscovered partners. Supersymmetry isn’t a feature of LQG.

These and other differences have split the theoretical physics community into deeply divergent camps. “Conferences have segregated,” said Jorge Pullin, a physicist at Louisiana State University and co-author of an LQG textbook. “Loopy people go to loopy conferences. Stringy people go to stringy conferences. They don’t even go to ‘physics’ conferences anymore. I think it’s unfortunate that it developed this way.”

Emily Fuhrman for Quanta Magazine, with text by Natalie Wolchover and art direction by Olena Shmahalo.

But a number of factors may be pushing the camps closer together. New theoretical findings have revealed potential similarities between LQG and string theory. A young generation of string theorists has begun to look outside string theory for methods and tools that might be useful in the quest to understand how to create a “theory of everything.” And a still-raw paradox involving black holes and information loss has given everyone a fresh dose of humility.

Moreover, in the absence of experimental evidence for either string theory or LQG, mathematical proof that the two are in fact opposite sides of the same coin would bolster the argument that physicists are progressing toward the correct theory of everything. Combining LQG and string theory would truly make it the only game in town.

An Unexpected Link

An effort to solve some of LQG’s own internal problems has led to the first surprising link with string theory. Physicists who study LQG lack a clear understanding of how to zoom out from their network of space-time chunks and arrive at a large-scale description of space-time that dovetails with Einstein’s general theory of relativity — our best theory of gravity. More worrying still, their theory can’t reconcile the special case in which gravity can be neglected. It’s a malaise that befalls any approach reliant on chunking-up space-time: In Einstein’s theory of special relativity, an object will appear to contract depending on how fast an observer is moving relative to it. This contraction also affects the size of space-time chunks, which are then perceived differently by observers with different velocities. The discrepancy leads to problems with the central tenet of Einstein’s theory — that the laws of physics should be the same no matter what the observer’s velocity.

“It’s difficult to introduce discrete structures without running into difficulties with special relativity,” said Pullin. In a brief paper he wrote in 2014 with frequent collaborator Rodolfo Gambini, a physicist at the University of the Republic in Montevideo, Uruguay, Pullin argued that making LQG compatible with special relativity necessitates interactions that are similar to those found in string theory.

That the two approaches have something in common seemed likely to Pullin since a seminal discovery in the late 1990s by Juan Maldacena, a physicist at the Institute for Advanced Study in Princeton, N.J. Maldacena matched up a gravitational theory in a so-called anti-de Sitter (AdS) space-time with a field theory (CFT — the “C” is for “conformal”) on the boundary of the space-time. By using this AdS/CFT identification, the gravitational theory can be described by the better-understood field theory.

The full version of the duality is a conjecture, but it has a well-understood limiting case that string theory plays no role in. Because strings don’t matter in this limiting case, it should be shared by any theory of quantum gravity. Pullin sees this as a contact point.

Video: In this artist’s conception, the network underlying space-time in loop quantum gravity is shown as a series of colored faces. The video shows the behavior of space-time at the Planck scale, the smallest possible area. If we were to zoom out, quantum details would disappear, and space-time would begin to resemble the smooth, continuous geometry of classical physics.

T. Thiemann/Albert Einstein Institute/Milde Marketing/Exozet

Herman Verlinde, a theoretical physicist at Princeton University who frequently works on string theory, finds it plausible that methods from LQG can help illuminate the gravity side of the duality. In a recent paper, Verlinde looked at AdS/CFT in a simplified model with only two dimensions of space and one of time, or “2+1” as physicists say. He found that the AdS space can be described by a network like those used in LQG. Even though the construction presently only works in 2+1, it offers a new way to think about gravity. Verlinde hopes to generalize the model to higher dimensions. “Loop quantum gravity has been seen too narrowly. My approach is to be inclusive. It’s much more intellectually forward-looking,” he said.

But even having successfully combined LQG methods with string theory to make headway in anti-de Sitter space, the question remains: How useful is that combination? Anti-de Sitter space-times have a negative cosmological constant (a number that describes the large-scale geometry of the universe); our universe has a positive one. We just don’t inhabit the mathematical construct that is AdS space.

Verlinde is pragmatic. “One idea is that [for a positive cosmological constant] one needs a totally new theory,” he said. “Then the question is how different that theory is going to look. AdS is at the moment the best hint for the structure we are looking for, and then we have to find the twist to get a positive cosmological constant.” He thinks it’s time well spent: “Though [AdS] doesn’t describe our world, it will teach us some lessons that will guide us where to go.”

Coming Together in a Black Hole

Verlinde and Pullin both point to another chance for the string theory and loop quantum gravity communities to come together: the mysterious fate of information that falls into a black hole. In 2012, four researchers based at the University of California, Santa Barbara, highlighted an internal contradiction in the prevailing theory. They argued that requiring a black hole to let information escape would destroy the delicate structure of empty space around the black hole’s horizon, thereby creating a highly energetic barrier — a black hole “firewall.” This firewall, however, is incompatible with the equivalence principle that underlies general relativity, which holds that observers can’t tell whether they’ve crossed the horizon. The incompatibility roiled string theorists, who thought they understood black hole information and now must revisit their notebooks.

But this isn’t a conundrum only for string theorists. “This whole discussion about the black hole firewalls took place mostly within the string theory community, which I don’t understand,” Verlinde said. “These questions about quantum information, and entanglement, and how to construct a [mathematical] Hilbert space – that’s exactly what people in loop quantum gravity have been working on for a long time.”

Meanwhile, in a development that went unnoted by much of the string community, the barrier once posed by supersymmetry and extra dimensions has fallen as well. A group around Thomas Thiemann at Friedrich-Alexander University in Erlangen, Germany, has extended LQG to higher dimensions and included supersymmetry, both of which were formerly the territory of string theory.

More recently, Norbert Bodendorfer, a former student of Thiemann’s who is now at the University of Warsaw, has applied methods of LQG’s loop quantization to anti-de Sitter space. He argues that LQG can be useful for the AdS/CFT duality in situations where string theorists don’t know how to perform gravitational computations. Bodendorfer feels that the former chasm between string theory and LQG is fading away. “On some occasions I’ve had the impression that string theorists knew very little about LQG and didn’t want to talk about it,” he said. “But [the] younger people in string theory, they are very open-minded. They are very interested what is going on at the interface.”

“The biggest difference is in how we define our questions,” said Verlinde. “It’s more sociological than scientific, unfortunately.” He doesn’t think the two approaches are in conflict: “I’ve always viewed [string theory and loop quantum gravity] as parts of the same description. LQG is a method, it’s not a theory. It’s a method to think of quantum mechanics and geometry. It’s a method that string theorists can use and are actually using. These things are not incompatible.”

Not everyone is so convinced. Moshe Rozali, a string theorist at the University of British Columbia, remains skeptical of LQG: “The reason why I personally don’t work on LQG is the issue with special relativity,” he said. “If your approach does not respect the symmetries of special relativity from the outset, then you basically need a miracle to happen at one of your intermediate steps.” Still, Rozali said, some of the mathematical tools developed in LQG might come in handy. “I don’t think that there is any likelihood that string theory and LQG are going to converge to some middle ground,” he said. “But the methods are what people normally care about, and these are similar enough; the mathematical methods could have some overlap.”

Not everyone on the LQG side expects the two will merge either. Carlo Rovelli, a physicist at the University of Marseille and a founding father of LQG, believes his field ascendant. “The string planet is infinitely less arrogant than ten years ago, especially after the bitter disappointment of the non-appearance of supersymmetric particles,” he said. “It is possible that the two theories could be parts of a common solution … but I myself think it is unlikely. String theory seems to me to have failed to deliver what it had promised in the ’80s, and is one of the many ‘nice-idea-but-nature-is-not-like-that’ that dot the history of science. I do not really understand how can people still have hope in it.”

For Pullin, declaring victory seems premature: “There are LQG people now saying, ‘We are the only game in town.’ I don’t subscribe to this way of arguing. I think both theories are vastly incomplete.”

This article was reprinted on Wired.com and BusinessInsider.com.

https://www.quantamagazine.org/string-theory-meets-loop-quantum-gravity-20160112/

————-

Verschil tussen snaartheorie en lus Quantumzwaartekracht

Snaartheorie en zwaartekracht van de kwantumlus zijn twee theorieën over kwantumzwaartekracht. Maar het zijn twee verschillende benaderingen. Snaartheorie is een theoretische poging om alle vier fundamentele interacties te verenigen. Lus kwantumzwaartekracht probeert niet om fundamentele interacties te verenigen. Het is slechts een theorie van kwantumzwaartekracht. De snaartheorie vertrekt van fundamentele aspecten van de kwantumtheorie. Lus quantum zwaartekracht, aan de andere kant, vertrouwt op de algemene relativiteit en quantize zwaartekrachtveld. Snaartheorie werkt in hogere dimensionale ruimtetijden. Maar de kwantumzwaartekracht vereist geen hogere dimensies. Dit is de grootste verschil tussen snaartheorie en kwantumzwaartekracht. Hoewel beide theorieën proberen een theorie van kwantumzwaartekracht te modelleren, zijn ze theoretisch heel anders. Dit artikel probeert fundamentele aspecten van beide theorieën en het verschil tussen beide te verklaren.

Wat is String Theory

Snaartheorie is een theoretische poging om alle vier fundamentele interacties te verenigen in een enkele verenigde theorie. Verschillende snaartheorieën zoals superstring-theorie en M-theorie worden momenteel ontwikkeld. Stringtheorieën zijn ontwikkeld op basis van dezelfde uitgangspunten van de kwantumtheorie. Snaartheorieën vertrekken vanuit de kwantumtheorie. Quantumtheorie is een combinatie van alle fundamentele interacties behalve de zwaartekracht. Ze zijn dus gebaseerd op drie fundamentele interacties. Uiteindelijk wordt de snaartheorie een unificatie van alle vier fundamentele interacties. Dus snaartheorie wordt beschouwd als een theorie van kwantumzwaartekracht.

In de snaartheorie worden de puntvormige nul-dimensionale deeltjes die in de fundamentele deeltjesfysica worden verondersteld echter vervangen door eendimensionale tekenreeksachtige objecten. Deze snaren kunnen trillen en rekken. Ze zijn de kwantumbouwstenen van materie.

In de snaartheorie is het concept van een supersymmetrie essentieel om fermionen op te nemen. Volgens het concept van supersymmetrie moeten alle fermionen een superpartner-boson hebben. So supersymmetrie is dus een conceptuele intermediair die bosonen (krachtdragers) en fermionen (materiedeeltjes) met elkaar in verband brengt. Stringentheorieën die het concept van supersymmetrie gebruiken, worden theorieën van superstrings genoemd. Normaal gesproken vereisen snaartheorieën meer dan vier dimensies. In de superstring-theorie wordt de ruimte-tijd als tien-dimensionaal beschouwd. In de M-theorie wordt aangenomen dat de ruimtetijd 11-dimensionaal is.

In principe worden snaartheorieën geclassificeerd volgens het type snaren dat in de theorie wordt verondersteld. Er zijn twee soorten stringlussen: gesloten tekenreeksen die kunnen worden gescheiden in open tekenreekslussen en gesloten tekenreekslussen die niet kunnen worden gedeeld in open tekenreeksen. De grootte van strings wordt verondersteld rond de lengte van Planck of 10 te liggen-35m. Dus, als strings echt bestaan, zou het heel moeilijk zijn om met huidige technologieën te detecteren.

Van snaartheorie wordt aangenomen dat het een veelbelovende kandidaat is voor een kwantumtheorie van de zwaartekracht en een unificatie is van alle vier de fundamentele interactie in de natuur..

Open string en Closed string

Wat is Loop Quantum Gravity

Luskwantumzwaartekracht is ook een theorie van kwantumzwaartekracht. In tegenstelling tot de snaartheorie, probeert lus kwantumzwaartekracht fundamentele interacties niet te verenigen. Lus kwantumzwaartekracht ontwikkelt eenvoudigweg een theorie van de zwaartekracht uit de algemene relativiteit. Het vertrouwt voornamelijk op de algemene relativiteit en kwantiseert het zwaartekrachtsveld. In tegenstelling tot de snaartheorie, die zich voornamelijk richt op kwantumeigenschappen van materie, concentreert lus kwantumzwaartekracht zich voornamelijk op kwantumeigenschappen van ruimte-tijd en zwaartekracht.

Ruimtetijd in lus Kwantumzwaartekracht wordt gezien als een weefsel van lussen. De ruimte is dus niet vloeiend op de oorspronkelijke schaal, maar is korrelig. Dat betekent dat de ruimtetijd discreet is en gekwantiseerd. Wiskundig gezien is de ruimtetijd een spinnetwerk waarvan de quantumtoestanden verschillende quantumtoestanden van de ruimtetijd vertegenwoordigen. De fundamentele grootte van ruimtetijdweefsel ligt rond de Planck-lengteschaal (10-35m) wat de kortst mogelijke afstand is in de natuurkunde.

In de kwantumluszwaartekracht is de oneindige singulariteit bij de oerknal vervangen door een grote stuitering. Dus de theorie vergemakkelijkt het bestuderen van het universum voorbij de oerknal. Bovendien voorspelt de theorie de entropie van zwarte gaten.

Verschil tussen snaartheorie en lus Quantumzwaartekracht

Unificatie van fundamentele interacties:

Snaartheorie: Het is een unificatie van alle vier fundamentele interacties.

Kwantumzwaartekracht: Het probeert niet om fundamentele interacties te verenigen. Het is een kwantummechanische theorie van zowel zwaartekracht als ruimtetijd.

supersymmetrie:

Snaartheorie: Het is een zeer belangrijk aspect om fermionen en bosonen te relateren.

Kwantumzwaartekracht: Het vereist geen supersymmetrie.

Overtreding van Lorentz Invariants:

Snaartheorie: Het maakt geen inbreuk op Lorentz-invarianten.

Kwantumzwaartekracht: Het schendt Lorentz-invarianten.

Dimensies:

Snaartheorie: De snaartheorie vereist hogere dimensies van meer dan 4.

Kwantumzwaartekracht: Quantumzwaartekracht vereist geen hogere dimensies.

Nadering:

Snaartheorie: Het benadert kwantumzwaartekracht, uitgaande van de hoofdaspecten van de kwantumtheorie.

Kwantumzwaartekracht: Het benadert kwantumzwaartekracht, uitgaande van de belangrijkste aspecten van de algemene relativiteit.

Afbeelding met dank aan:

“Open en gesloten reeksen” door Xoneca – Eigen werk (Public Domain) via Commons Wikimedia

“Loop Quantum Theory” door Linfoxman – Foxman (Public Domain) via Commons Wikimedia 

 

Loop Quantum Gravity Explained

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE ↓ More info below ↓ Sign Up on Patreon to get access to the Space Time Discord! https://www.patreon.com/pbsspacetime Check out the Space Time Merch Store https://pbsspacetime.com/ It’s time we talked about loop quantum gravity. What exactly is it? What are the loops? And can it really defeat string theory in our quest for a Theory of Everything? Hosted by Matt O’Dowd Written by Graeme Gossel & Matt O’Dowd Graphics by Leonardo Scholzer Directed by: Andrew Kornhaber Executive Producers: Eric Brown & Andrew Kornhaber End Credits Music by J.R.S. Schattenberg: https://www.youtube.com/channel/UCRl6… The holy grail of physics is to connect our understanding of the tiny scales of atoms and subatomic particles with that of the vast scales of planets, galaxies, and the entire universe. To connect quantum physics with Einstein’s general theory of relativity. Our search for a theory of quantum gravity is a century old, and we’ve talked quite a bit about it already, including what’s probably the lead contender – string theory. But string theory isn’t the only game in town – or so some physicists believe. There may be another way to reconcile the physics of the tiny and the gigantic – another way to a theory of quantum gravity that avoids a lot of conceptual baggage like tiny wiggling strings made of coiled up extra dimensions. That other way would be loop quantum gravity, and today we’re going to learn exactly what it is. Special Thanks to Our Patreon Supporters Big Bang Supporters: David Barnholdt David Boyer David Nicklas Fabrice Eap Juan Benet matt miller Morgan Hough Quasar: Mark Heising Mark Rosenthal Vinnie Falco Hypernova: chuck zegar Danton Spivey Donal Botkin Edmund Fokschaner Hank S joe pearce John Hofmann John R. Slavik Jordan Young Joseph Salomone Mathew Matthew O’Connor Syed Ansar Gamma Ray Burst: A G Adrien Molyneux AlecZero Andreas Nautsch Bradley Jenkins Brandon labonte Brian Dan Warren Daniel Lyons David Bethala DFaulk Frederic Simon Geoffrey Short Graydon Goss Greg Smith James Flowers John Funai John Griffith John Michael Kerr John Pollock John Robinson Jonathan Nesfeder Joseph Dillman Josh Thomas Kevin Lee Kevin Warne Kyle Hofer Malte Ubl Nick Virtue Nick Wright Paul Rose Scott Gossett Sean Warniaha Tim Stephani Tonyface Yurii Konovaliuk

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *